Conformational selection is a dominant mechanism of ligand binding.

نویسندگان

  • Austin D Vogt
  • Enrico Di Cera
چکیده

Molecular recognition in biological macromolecules is achieved by binding interactions coupled to conformational transitions that precede or follow the binding step, two limiting mechanisms known as conformational selection and induced fit, respectively. Sorting out the contribution of these mechanisms to any binding interaction remains a challenging task of general interest in biochemistry. Here we show that conformational selection is associated with a vast repertoire of kinetic behaviors, can never be disproved a priori as a mechanism of ligand binding, and is sufficient to explain the relaxation kinetics documented experimentally for a large number of systems. On the other hand, induced fit features a narrow spectrum of kinetic behaviors and can be disproved in many cases in which conformational selection offers the only possible explanation. This conclusion offers a paradigm shift in the analysis of relaxation kinetics, with conformational selection acquiring preeminence as a mechanism of ligand binding. The dominant role of conformational selection supports the emerging structural view of the macromolecule as a conformational ensemble from which the ligand selects the initial optimal fit to produce a biological response.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitatively Characterizing the Ligand Binding Mechanisms of Choline Binding Protein Using Markov State Model Analysis

Protein-ligand recognition plays key roles in many biological processes. One of the most fascinating questions about protein-ligand recognition is to understand its underlying mechanism, which often results from a combination of induced fit and conformational selection. In this study, we have developed a three-pronged approach of Markov State Models, Molecular Dynamics simulations, and flux ana...

متن کامل

Conformational selection or induced fit? A critical appraisal of the kinetic mechanism.

For almost five decades, two competing mechanisms of ligand recognition, conformational selection and induced fit, have dominated our interpretation of ligand binding in biological macromolecules. When binding-dissociation events are fast compared to conformational transitions, the rate of approach to equilibrium, k(obs), becomes diagnostic of conformational selection or induced fit based on wh...

متن کامل

From induced fit to conformational selection: a continuum of binding mechanism controlled by the timescale of conformational transitions.

In receptor-ligand binding, a question that generated considerable interest is whether the mechanism is induced fit or conformational selection. This question is addressed here by a solvable model, in which a receptor undergoes transitions between active and inactive forms. The inactive form is favored while unbound but the active form is favored while a ligand is loosely bound. As the active-i...

متن کامل

Conformational selection or induced fit: a flux description of reaction mechanism.

The mechanism of ligand binding coupled to conformational changes in macromolecules has recently attracted considerable interest. The 2 limiting cases are the "induced fit" mechanism (binding first) or "conformational selection" (conformational change first). Described here are the criteria by which the sequence of events can be determined quantitatively. The relative importance of the 2 pathwa...

متن کامل

A Role for Both Conformational Selection and Induced Fit in Ligand Binding by the LAO Protein

Molecular recognition is determined by the structure and dynamics of both a protein and its ligand, but it is difficult to directly assess the role of each of these players. In this study, we use Markov State Models (MSMs) built from atomistic simulations to elucidate the mechanism by which the Lysine-, Arginine-, Ornithine-binding (LAO) protein binds to its ligand. We show that our model can p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 52 34  شماره 

صفحات  -

تاریخ انتشار 2013